Repression of light signaling by Arabidopsis SPA1 involves post-translational regulation of HFR1 protein accumulation.
نویسندگان
چکیده
Arabidopsis uses two major classes of photoreceptors to mediate seedling de-etiolation. The cryptochromes (cry1 and cry2) absorb blue/ultraviolet-A light, whereas the phytochromes (phyA-phyE) predominantly regulate responses to red/far-red light. Arabidopsis COP1 represses light signaling by acting as an E3 ubiquitin ligase in the nucleus, and is responsible for targeted degradation of a number of photomorphogenesis-promoting factors, including HY5, LAF1, phyA, and HFR1. Distinct light signaling pathways initiated by multiple photoreceptors (including both phytochromes and cryptochromes) eventually converge on COP1, causing its inactivation and nuclear depletion. Arabidopsis SPA1, which encodes a protein structurally related to COP1, also represses light signaling under various light conditions. In this study, we present genetic evidence supporting that HFR1, which encodes a photomorphogenesis-promoting bHLH transcription factor, acts downstream of SPA1 and is required for different subsets of branch pathways of light signaling controlled by SPA1 under different light conditions. We show that SPA1 physically interacts with HFR1 in a yeast two-hybrid assay and an in vitro co-immunoprecipitation assay. We demonstrate that higher levels of HFR1 protein accumulate in the spa1 mutant background under various light conditions, including far-red, red, blue, and white light, whereas a marginal increase in HFR1 transcript level is only seen in dark- and far-red light-grown spa1-100 mutants. Together, our data suggest that repression of light signaling by Arabidopsis SPA1 likely involves post-translational regulation of HFR1 protein accumulation.
منابع مشابه
Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis.
Arabidopsis thaliana seedlings undergo photomorphogenesis in the light and etiolation in the dark. Long Hypocotyl in Far-Red 1 (HFR1), a basic helix-loop-helix transcription factor, is required for both phytochrome A-mediated far-red and cryptochrome 1-mediated blue light signaling. Here, we report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent...
متن کاملIndependent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling.
Several positive regulators of phytochrome A signaling--e.g., LAF1, HFR1, and HY5--operate downstream from the photoreceptor, but their relative sites of action in the transduction pathway are unknown. Here, we show that HFR1RNAi/laf1 or hfr1-201/LAF1RNAi generated by RNA interference (RNAi) has an additive phenotype under FR light compared with the single mutants, hfr1-201 or laf1. This result...
متن کاملSPA1, a WD-repeat protein specific to phytochrome A signal transduction.
The five members of the phytochrome photoreceptor family of Arabidopsis thaliana control morphogenesis differentially in response to light. Genetic analysis has identified a signaling pathway that is specifically activated by phytochrome A. A component in this pathway, SPA1 (for "suppressor of phyA-105"), functions in repression of photomorphogenesis and is required for normal photosensory spec...
متن کاملOverexpression of a mutant basic helix-loop-helix protein HFR1, HFR1-deltaN105, activates a branch pathway of light signaling in Arabidopsis.
The HFR1, a basic helix-loop-helix protein, is required for a subset of phytochrome A-mediated photoresponses in Arabidopsis. Here, we show that overexpression of the HFR1-deltaN105 mutant, which lacks the N-terminal 105 amino acids, confers exaggerated photoresponses even in darkness. Physiological analysis implied that overexpression of HFR1-deltaN105 activated constitutively a branch pathway...
متن کاملArabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light.
Phytochrome A (phyA) is the primary photoreceptor mediating deetiolation under far-red (FR) light, whereas phyB predominantly regulates light responses in red light. SUPPRESSOR OF PHYA-105 (SPA1) forms an E3 ubiquitin ligase complex with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which is responsible for the degradation of various photomorphogenesis-promoting factors, resulting in desensitization t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2005